当前位置:返回首页 > 信息动态 > 技术文档 >

焦化焦炉设备废水处理系统的可行方法和表面吸附力的影响

作者:瑞创机械 日期:2022-06-02

[一]、国内焦化设备配件焦化废水处理系统的可行方法
随着我国工业现代化加速进行,所面临的环境污染问题也日趋突出。而对于我国这样一个缺水来说,水环境污染的日趋严重化是进一步加剧了我国水资源短缺的矛盾,成为制约我国经济社会发展的重要因素。因此,保护水资源、防治水污染、改变水环境是关乎国计民生和社会可持续发展的重要内容。焦化废水,长期以来作为冶金焦化行业较大污染源之一,以其水量大,成分复杂,含有许多难以生物降解的物,处理难度很大的特点在行业内一直饱受关注。
目前,国内有焦化焦炉设备主要采用处理和二级处理,采用处理的较少。处理是指从污水中回收利用污染物,其工艺包括氨水脱酚、氨水蒸馏、终冷水脱氰等。二级处理主要指酚氰污水化处理,主要以活性污泥法为主,还包括一些生物处理技术如生物铁法等,对提高处理效率有的作用。虽然一、二级处理工艺对酚和氰化物等易降解物有较好的处理效果,但对难降解物如多环芳烃和杂环化合物的处理效果不佳,出水水质通常浊度色度大、COD,NH3-N严重超标、颜色重且有臭味,排放后对水体污染很大。如果考虑将废水回用,将是对水资源优化配置和节水减污的一项重要举措。因此,采取处理的预处理组合工艺,焦化设备配件对处理进行预处理,这样不仅可以满足处理进水要求,同时使得处理出水水质达到回用标准,而且降低了处理成本。如何获得工艺简单、经济可行的处理的预处理方案是目前急待解决的课题。
吸附方法是利用多孔性吸附材料来吸取水中的杂质,使之附着于吸附材料的表面,以期能达到降低水中杂质之目的。该法可用于处理水中的微量杂质,并能够脱除水中的其它微量污染物从而提高水体的质量。但吸附法一般费用较高,其中吸附剂的价格是制约吸附法应用的瓶颈问题。在我国一些地区如山西、内蒙等地蕴藏着大量的弱粘结性煤,当地居民煤气工程大多采用直立炉,副产大量半焦。这些半焦堆积如山,对周边的环境造成了严重的污染。从洁净煤技术和环境保护的角度讲,鱼待半焦的新用途。半焦本身具有丰富的孔隙和表面结构,而且廉,因此考虑将其作为处理含油废水的吸附剂。本文论证了半焦吸附处理焦化废水的可行性,测定了半焦静态吸附焦化废水中各参数的影响,并针对处理对象山西某焦化企业的焦化废水和半焦自身的物理化学性质,探讨了半焦活化的方法和活化后半焦各方面性质的变化,考察活化后半焦对焦化废水的静态吸附和正交实验吸附以及半焦的效果。
[二]、焦炉设备内表面吸附力的影响
加热炉炉管内表面越粗糙,焦炉设备其吸附能力表现得就越高。当原料介质中含有数量的盐类杂质时,由于盐类杂质的逐渐沉降,使加热炉炉管内表面吸附能力不断加强。而高流速介质会使加热炉炉管壁的吸附力减弱。
介质在加热炉炉管内流动时,与炉管内表面之间的过渡区,称为边界层。介质主体温度要比边界层的平均温度低,而平均速度比边界层速度块,且流动状态为层流。因此,边界层总是比介质主体入临界区,焦粉的浓度比介质主体中焦粉的。
焦化设备配件加热炉炉管内介质裂解的临界温度比边界层的温度高时,可以认为基本不结焦。介质裂解的临界温度与边界层的温度相当时,焦炭量增加,且随边界层温度的上升而增加,此时认为加热炉炉管开始结焦。加热炉炉管结焦的速度不仅与边界层的平均流速、压力、温度、边界层焦粉的浓度有关,而且与边界层的厚度有关,控制边界层的厚度,会使结焦速度越慢。
通过加热炉炉管内外过程模拟可知,通常情况下,如介质温度420℃,管内壁或油膜温度450℃-460℃。油膜温度过高会引起某段炉管内介质气化加剧,当Q/a上升到300-400,加热炉炉管内壁温度将增加。当高温炉管与易结焦介质接触后,导致加热炉炉管结焦速率上升。
影响生焦速率的主要因素是管壁温度(或内膜温度)和表面热强度。在的流速下,内膜温度升高或热强度增大,则生焦速度会明显加快,为了减缓生焦速率,尽力提高焦垢脱离速度,工艺上采取的主要措施是通过提高炉管注汽量,使炉管内介质流速增加,并使其处于湍流状态。

热门产品
  • 炉门炉框保护板

    炉门炉框保护板是焦炉的主要护炉铁件,是填充闭焦炉炭化室的主体设

    炉门炉框保护板
  • 阀体

    ​桥管阀体技术要求:阀盘装载后,应与阀体的水封径口接触平整,水

    阀体
  • 6米焦炉开闭器

    6米焦炉开闭器是控制焦炉加热用空气量,导入贫煤气和控制排出的废气

    6米焦炉开闭器